Exercise 48

Two people start from the same point. One walks east at $3 \mathrm{mi} / \mathrm{h}$ and the other walks northeast at $2 \mathrm{mi} / \mathrm{h}$. How fast is the distance between the people changing after 15 minutes?

Solution

Draw a schematic of the paths at a certain time.

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=3 \frac{\mathrm{mi}}{\mathrm{~h}} \\
& \frac{d x_{2}}{d t}=2 \frac{\mathrm{mi}}{\mathrm{~h}}
\end{aligned}
$$

The aim is to find $d r / d t$ when $t=15 \mathrm{~min}=(1 / 4)$ hour. Start with the formula relating the sides of this triangle, the law of cosines.

$$
\begin{aligned}
r^{2} & =x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2} \cos 45^{\circ} \\
& =x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}\left(\frac{\sqrt{2}}{2}\right) \\
& =x_{1}^{2}+x_{2}^{2}-\sqrt{2} x_{1} x_{2} \\
r & =\sqrt{x_{1}^{2}+x_{2}^{2}-\sqrt{2} x_{1} x_{2}}
\end{aligned}
$$

Take the derivative of both sides with respect to time by using the chain and product rules.

$$
\begin{aligned}
\frac{d}{d t}(r) & =\frac{d}{d t}\left(\sqrt{x_{1}^{2}+x_{2}^{2}-\sqrt{2} x_{1} x_{2}}\right) \\
\frac{d r}{d t} & =\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}-\sqrt{2} x_{1} x_{2}\right)^{-1 / 2} \cdot \frac{d}{d t}\left(x_{1}^{2}+x_{2}^{2}-\sqrt{2} x_{1} x_{2}\right) \\
& =\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}-\sqrt{2} x_{1} x_{2}\right)^{-1 / 2} \cdot\left[\frac{d}{d t}\left(x_{1}^{2}\right)+\frac{d}{d t}\left(x_{2}^{2}\right)-\sqrt{2} \frac{d}{d t}\left(x_{1} x_{2}\right)\right] \\
& =\frac{1}{2 \sqrt{x_{1}^{2}+x_{2}^{2}-\sqrt{2} x_{1} x_{2}}} \cdot\left[2 x_{1} \cdot \frac{d x_{1}}{d t}+2 x_{2} \cdot \frac{d x_{2}}{d t}-\sqrt{2}\left(\frac{d x_{1}}{d t} x_{2}+x_{1} \frac{d x_{2}}{d t}\right)\right]
\end{aligned}
$$

Therefore, when person 1 and person 2 travel the respective distances, $x_{1}=3 *(1 / 4)$ miles and $x_{2}=2 *(1 / 4)$ miles, 15 minutes later, the rate of change of the distance between the people with respect to time is

$$
\begin{aligned}
\left.\frac{d r}{d t}\right|_{\substack{x_{1}=3 / 4 \\
x_{2}=1 / 2}} & =\frac{1}{2 \sqrt{\left(\frac{3}{4}\right)^{2}+\left(\frac{1}{2}\right)^{2}-\sqrt{2}\left(\frac{3}{4}\right)\left(\frac{1}{2}\right)}}\left\{2\left(\frac{3}{4}\right)(3)+2\left(\frac{1}{2}\right)(2)-\sqrt{2}\left[(3)\left(\frac{1}{2}\right)+\left(\frac{3}{4}\right)(2)\right]\right\} \\
& =\sqrt{13-6 \sqrt{2}} \frac{\mathrm{mi}}{\mathrm{~h}} \\
& \approx 2.12479 \frac{\mathrm{mi}}{\mathrm{~h}}
\end{aligned}
$$

